Ínnía-

International Operational Modal Analysis Conference

May 20 - 23, 2025 | Rennes, France

WELCOME TO IOMAC 2025!

We are delighted to welcome you to the 11th International Operational Modal Analysis Conference (IOMAC 2025), from May 20th to 23rd in Rennes, at its first-ever edition in France.

This year also marks the 20th anniversary of IOMAC. Over the past two decades, OMA has evolved into a mature and dynamic field, with wide-ranging of theoretical, methodological, and applied developments. At IOMAC 2025, we proudly build on this legacy and venture forward to explore new avenues of research and applications. The theme "**OMA and beyond**" reflects the evolving role of OMA as more than just a tool for estimating modal parameters. Being essential for the analysis of systems under operational conditions across civil, mechanical, aeronautical, and geotechnical engineering, OMA progresses towards the integration of its philosophy with emerging methods for digital twins, hybrid modeling, physics-informed learning, and more – considering the growing complexity of modern engineering systems.

The conference program offers an opportunity to revisit the fundamentals in our pre-conference courses, and get insight into the OMA of tomorrow through technical presentations from academics and practitioners around the globe. The three-day program features keynote lectures by leading experts, around 100 technical presentations – including special sessions that reach beyond traditional OMA boundaries –, an industry exhibition, and engaging social events to connect and inspire the community.

We wish you a rewarding and enjoyable conference!

Warm regards, Dr. Michael Döhler & the Organizing Committee

VENUE INFORMATION

IOMAC 2025 takes place at the Inria Center at University of Rennes which is located on the University Campus de Beaulieu and can be easily reached by public transportation. A single fare costs $1.70 \in$ and is valid for one hour from the time of first validation.

You can simply tap your contactless credit card on the terminal inside the bus or at the metro entrance to validate your ticket.

From city center: at the "République" station, take line C4 toward Saint-Sulpice or line C6 to Cesson-Sévigné, and get off at the "Tournebride" stop. Then it's a short walk to Inria on the campus. The bus ride takes around 10 minutes.

VENUE INFORMATION

From the venue, you can access directly the train station and the airport:

- **To train station:** Enjoy a 10-minute walk to the Metro line B station "Beaulieu Université" on the campus. Board the metro heading towards "Saint-Jacques – Gaîté", and get off at "Gares" after a 10-minute ride.
- **To airport:** Take the C6 bus at the "Tournebride" stop in direction of "Aéroport – Saint-Jacques-de-la-Lande". The C6 line directly serves Rennes Airport, with the stop located just in front of the terminal building. The journey takes about 30–40 minutes, and runs every 10–15 minutes.

GENERAL INFORMATION

Registration desk and badge pickup: You can obtain your badge and conference kit at the welcome reception on Tuesday, May 20, 18:30 – 20:30, at Le Piccadilly, Place de la Mairie, in the city center of Rennes. At the venue, you can pick up your badge at the registration desk next to the reception of Inria during the conference opening hours (see program).

Please remember to **wear your conference badge at all times**. It not only identifies you as a participant and grants access to the venue, but also gives you access to the social program (welcome reception, wine & cheese tasting, Mont-Saint-Michel tour with gala dinner).

Conference rooms: The plenary sessions will take place in the auditorium (ground floor), and the parallel sessions will take place in the auditorium, as well as in the rooms Markov and Petri-Turing (upper floor). For those who may need a quiet place to read, catch up on work, or prepare for their presentation, a dedicated working space is available in the meeting room on the first floor.

Ground floor

GENERAL INFORMATION

First floor

Coffee breaks and lunches will be served in the exhibition area in the ground floor, where standing tables will be available. For more space and seating, the Petri-Turing room will also be open during lunch breaks. Please make your way to the lunch area promptly at the start of the break so we can maintain the schedule.

Wi-Fi access is available throughout the venue. If you have institutional access, we recommend connecting via eduroam. Otherwise, a local Wi-Fi code is included in the pocket of your conference badge.

Luggage storage: Should you require a place to store your luggage during the day, please speak with the staff at the registration desk, who will be happy to assist.

Please note that luggage remains under the responsibility of its owner.

GENERAL INFORMATION

Presentation guidelines

Each technical presentation is allocated a 20-minute time slot, which includes 15 minutes for the presentation and 5 minutes for Q&A and transition to the next speaker. Timing will be strictly enforced to ensure a smooth flow between parallel sessions.

Speakers must arrive in the session room at least 15 minutes before the start of their session to upload their presentation (PowerPoint or PDF format with all fonts and media embedded).

Please rename the file as *NumberWithinSession_Surname* (e.g., 3_Andersen.pdf) before copying it to the room's laptop. The conference computers are equipped with Windows 11. It is not possible to use own devices.

Members of the conference staff will be available in each room to provide technical assistance and can be easily identified by their yellow badge and lanyard.

PROGRAM AT A GLANCE

Tuesday, May 20 th 2025			
08:00 - 17:00	Pre-conference courses (upon registration)	Petri-Turing, Markov	
18:30 – 20:30	Welcome reception	Le Piccadilly (Center of Rennes)	

Wednesday, May 21⁵t 2025			
08:00 - 08:30	Registration & welcome coffee	Main lobby	
08:30 - 09:00	Opening ceremony	Auditorium	
09:00 - 10:00	Keynote lecture	Auditorium	
10:00 - 10:20	Coffee break	Main lobby	
10:20 – 12:20	Parallel sessions	Auditorium, Petri-Turing, Markov	
12:20 - 14:00	Lunch break	Main lobby, Petri-Turing	
14:00 - 15:40	Parallel sessions	Auditorium, Petri-Turing, Markov	
15:40 – 16:00	Coffee break	Main lobby	
16:00 – 17:20	Parallel sessions	Auditorium, Petri-Turing, Markov	
17:20 - 18:00	PhD pitch competition	Auditorium	
19:00 – 21:00	Wine & cheese tasting	L'Aventure, Prison Saint-Michel (Center of Rennes)	

PROGRAM AT A GLANCE

Thursday, May 22 nd 2025			
08:00 - 08:30	Registration & welcome coffee	Main lobby	
08:30 - 09:30	Lecture of Honor	Auditorium	
09:30 - 10:30	Parallel sessions	Auditorium, Petri-Turing,	
		Markov	
10:30 – 10:50	Coffee break	Main lobby	
10:50 – 12:50 Parallel sessions		Auditorium, Petri-Turing,	
		Markov	
12:50 – 14:00	Lunch break	Main lobby, Petri-Turing	
14:00 - 23:30	Mont-Saint-Michel tour with	Departure by bus	
	gala dinner		

Friday, May 23 rd 2025			
08:30 - 09:00	Registration & welcome coffee	Main lobby	
09:00 - 10:20	Industrial keynote lectures	Auditorium	
10:20 - 10:40	Coffee break	Main lobby	
10:40 – 11:40	Parallel sessions	Auditorium, Petri-Turing,	
		Markov	
11:40 – 12:40	Industrial plenary session	Auditorium	
12:45 – 14:00	Lunch break	Main lobby, Petri-Turing	
14:00 – 15:20	Parallel sessions	Auditorium, Petri-Turing,	
		Markov	
15:20 – 15:50	Closing ceremony	Auditorium	
16:00 – 18:00	Farewell coffee & open	Main lobby	
	discussion		

Tuesday May 20, 2025				
	Pre-conference courses (upon registration)			
	Petri-Turing Markov			
08:00	C. Ventura, NJ. Jacobsen:	S. Greś, A. Mendler:		
	Operational Modal Analysis: Background,	Advanced Methods for Vibration		
	Theory & Practice	Analysis		
18:30	Welcome reception at Le Piccadilly (Place de la Mairie, center of Rennes)			

Wednesday May 21, 2025				
08:00	R	Registration & welcome coffee		
		Auditorium		
08:30	Opening ceremony			
09:00	Keynote lecture E. Chatzi: Structural dynamics as a principal pillar to AI-enhanced digital twinning			
10:00	Coffee Break			
	Auditorium	Petri-Turing	Markov	
	S9 - Physics-enhanced learning for structural health monitoring tasks Chairs: K. Vlachas, M. Haywood-Alexander	S4 – Dynamic identification and long- term modal-based monitoring of bridges (1) Chairs: I. Rosati, P. Borlenghi	Damage detection Chairs: S. Fassois, L. Avendaño-Valencia	
10:20	M. Jensen: Application of pseudo-anomaly generation in unsupervised fault diagnosis of wind turbine bearings under changing operating conditions	J. Kullaa: A design map for a structural health monitoring system based on redundancy of autocovariance functions	D. Dessi: Use of ensemble learning in damage identification based on curvature analysis	

10.10	M. Bernelater and a	I I address of A second	
10:40	V. Panagiotopoulou:	L. lerimonti: A multi-	J. Pacheco-Cherrez:
	Damage Identification in	scenario approach for	Operational Strain Modal
	Rotary Shafts via Vibration	structural health monitoring	Analysis and Wavelet
	Monitoring and Physics-	of existing bridges	Analysis for Damage
	Informed Neural Networks		Detection in Glass Beams
11:00	Z. Chao Ong: Feasibility	F. Hille: System	M. Aenlle: Proportional
	study of utilising modal-	identification and model	flexibility matrices using
	based features for finite	calibration of a steel road	modal parameters
	element model-informed	bridge	estimated with operational
	artificial neural network-	_	modal analysis
	based damage identification		
11:20	N. Mahar: Physics-aware	A. Avramova: Long-term	A. Bendezú: Structural
	neural network integrated	operational modal analysis	damage detection on a full
	with stochastic subspace	of a steel-concrete	scale masonry cross vault
	identification for	composite bridge	subjected to quasi-static
	quantification of physical		cyclic loading tests
	changes		
11:40	A. Venturi: Robustness vs.	M. Civera: Experimental	J. Ragnitz: Influence of
-	effectiveness of transfer	Damping Identification of a	Optimised Sensor
	learning in damage	Bridge Case Study in Norway	Placements on Multi-
	identification depending on	under Still Air Conditions	Objective Model Updating
	feature selection		for Damage Localisation
12:00	B. Yamamoto: Stochastic	L. Severa: Wavelet-Based	S. Bogoevska: Robust data-
	modal analysis of pipe wall	Damage Sensitive Features	driven health monitoring of
	thinning structure based on	Extraction for Structural	full-scale concrete dam
	Generative Adversarial Net	Health Monitoring of Bridges	structures via stochastic ML
	(GAN) associated with	0.0.000	schemes
	interfacial roughness model		
12:20	0	Lunch Break	1
0			

	Auditorium	Petri-Turing	Markov
	S7 - Bayesian approaches	S6 - OMA for digital	S5 - Optical methods for
	for engineering	twins	structural identification
	dynamics	Chairs: R. Sarlo, A.	and monitoring (1)
	Chairs: T. Rogers,	Mendler	Chairs: J. Slavič,
	A. Hughes		V. Baltazart
14:00	M. Champneys: A Gibbs	A. Jara-Cisterna: Application	D. Gorjup: Frequency-
	sampler for removing	of Digital Twins in Structural	domain Triangulation for
	environmental effects in	Health Monitoring: A Case	Single-Camera Sound
	structural health monitoring	Study of a CLT Building in a	Radiation Measurement
	features	Seismic Zone	~
14:20	N. Aswal: Improving	S. Bertero: Cable tensioning	K. Cufar: Mode-shape
	Bayesian filters for structural	during retrofitting of a	magnification in high-speed
	health monitoring	suspension bridge: a case	camera measurements
	applications with subspace-	study on the use of updated	
	based hoise covariance	nommear models	
14.40	B O'Connell: Exploring	B Sarlo: Combined	A Zona: Multi-target
14.40	physically meaningful prior	Geometrical and Modal	computer-vision dynamic
	distributions for OMA	Model Calibration via Reality	monitoring of displacements
		Capture and Geometrical	in a full-scale building
		Modal Analysis: Application	Ū
		to a Steel Building	
15:00	P. Zhang: Probabilistic	D. Tcherniak: Efficient	Y. Wang: Vibration analysis
	Super-Resolution for High-	system identification, model	of a car door using randomly
	Fidelity Physical System	updating, and virtual sensing	sampled stereo camera
	Simulations with Uncertainty	in the Digital-Twin-as-a-	measurements with a large
	Quantification	Service software platform	stereo angle
15:20	F. Mariani: Probabilistic	T. Núñez: Integrated	D. Mastrodicasa:
	Damage Detection in a Post-	structural condition	Advancements in structural
	Tensioned Concrete Bridge	assessment of an ancient	dynamics characterization:
	Using Bayesian Neural	Mayan Temple	the role of Video Motion
	Networks for Continuous		Magnification in full-field
	Model Updating: a		Operational Deflection
	Numerical Study		Shape characterization
15:40		Cottee Break	

	Auditorium	Petri-Turing	Markov
	Civil structures	S1 - Diagnosis of rotating	S3 - Advances in modal
	applications	machinery	analysis for aeronautical
	Chairs: C. Ventura,	Chairs: M. Amer,	and space systems
	B. O'Connell	D. Tcherniak	Chairs: M. Civera,
			G. Dessena
16:00	M. Dupuis: Evaluation of a	N. Dreher: Harmonic	D. Antonini: Dynamic
	low-cost instrument for	removal for Automated	Characterization of a Flexible
	ambient vibration testing of	Operational Modal Analysis	Wing Model Using
	concrete gravity dams	of coupled rotor foundation	Stochastic Modal
		system influenced by	Appropriation for Nonlinear
		magnetic bearings and gas seals	Aeroelastic Analysis
16:20	P. Fernández: Vibration and	N. Delette: Model Updating	G. Dessena: Modal
	Modal Analysis of the	of Rotating Wind Turbines	parameter extraction via the
	Roman Wall of Lugo	Using Operational Modal	Loewner Framework:
		Analysis and Floquet Mode	Current progress and future
		Decomposition	directions
16:40	D. Siegert: Vibration based	V. Irissappane: Assessment	M. Tang: Application of
	early scour detection for	of harmonic suppression	gyroscopes for stability
	multi-pier bridges	methods within OlviA of an	monitoring in flutter tests
		axial piston pump under	
17.00		D M Bourdalos: Incinient	M Civera: East and relaxed
17.00		gear fault detection under	vector fitting: an application
		varving operating speed and	to a fighter jet aircraft
		load via Multiple Model	,
		vibration time series	
		methods	
		Auditorium	
17:20	PhD Pitch Competition		
19:00	Wine & cheese tasting, L'Aventure, Prison Saint-Michel (Center of Rennes)		

Thursday May 22, 2025			
08:00	Registration & welcome coffee		
		Auditorium	
08:30	Lecture of Honor S. Fassois: Time series based robust damage and fault diagnosis for structures and systems under uncertainty		
	Auditorium	Petri-Turing	Markov
	OMA software Chairs: M. Aenlle, A. Venturi	S2 - Monitoring for railway infrastructure: technologies and methods Chairs: C. Stoura, S. Greś	OMA for FEM-based assessment (1) Chairs: J. Kullaa, N. García-Fernández
9:30	A. Shamsaddinlou: A Comparative Study of OMA Techniques Using a Novel Python Library for Structural Health Monitoring	J. Ávila-Rodríguez: Ambient vibration testing results to estimate the predominant periods of soil motion and the shear wave velocity profile in an anthropic soil zone associated with the Mexico City METRO	G. Candoni: Applying Operational Modal Analysis to rammed earth buildings for seismic assessment: an exploratory study
9:50	D. Pasca: Easy automated OMA with open source software	L. Auersch: Modal analysis of road and rail bridges for damage detection and resonance prediction	B. Bhowmik: Reviving the I- 40 Structural Deficit Paradigm: An Online Computational Behavioural Study Under Imposed Traffic Loads
10:10	S. Quarchioni: New software for dynamic identification and optimal sensor placement of civil structures and infrastructures	C. Salvi: Suitability of MEMS accelerometers for continuous monitoring of railway bridges - a case study	F. López-Almansa: OMA of a school building damaged by the Illapel earthquake (Chile 2015)
10:30		Coffee Break	

	Auditorium	Petri-Turing	Markov
	S10 - Vibration-based assessment and monitoring for wind energy structures Chairs: S. Vettori, B. Peeters	S8 - Modeling and computational methods for physical model-based identification (1) Chairs: A. Mélot, V. Mahé	Uncertainty quantification Chairs: L. Mevel, J. Cara
10:50	X. Iriarte: Analysis of the aerodynamic damping in the modal parameter estimation of wind turbines	V. Mouton: An efficient neural network-based surrogate model for predicting static gear contact conditions	J. Cara: About the uncertainty of modal parameters estimated in Operational Modal Analysis
11:10	S. Vettori: Finite Element Model Updating of a Small- Scale Wind Turbine Blade Using Strain-Based Pull-and- Release Test Data	S. Greś: Detection of Stall Induced Vibrations in Standstill Wind Turbines	L. Neumann: Confidence Intervals for Conditional Covariances of Natural Frequencies
11:30	M. Amer: First steps towards the development of structural health monitoring approaches for wind turbines in seismic-prone areas	V. Mahé: Wave-based modelling of arbitrarily complex periodic waveguides with nonlinear boundaries	S. Marwitz: Cross-Validation in Stochastic Subspace Identification
11:50	K. Gnebner: Identification and Long-Term Tracking of Modal Parameters of a 150m Wind Measurement Mast Using Ambient Excitation	L. Salles: Computational methods for whirl flutter analysis	J. Gundlach: Uncertainty Quantification of the Modal Rotation Shape Sensing Method for Geometrically Non-Linear Deformation
12:10	G. Nico: Measuring displacements and vibration frequencies of wind towers by means of a ground-based radar interferometer	S. Anderson: Design optimisation of lightweight aerospace structures for vibration fatigue	C. Van Zijl: Quantification of errors in frequency-domain inverse force estimation due to measurement and model noise
12:30	Y. Govers: Reliable damping ratio estimates from a 50m+ wind turbine rotor blade as a guide for prototype testing in the low frequency regime		E. Chaves: Enhancing Dynamic Identification in Heritage Buildings: A Comparative Study of Optimal Sensor Placement Metrics
12:50		Lunch Break	
14:00	Mont Departure by bus from the	-Saint-Michel tour with gala c conference venue; return to	dinner Rennes scheduled at 23:30

Friday May 23, 2025				
08:30	Registration & welcome coffee			
		Auditorium		
09:00		Industrial Keynote		
	F. Batlle: Dynamic computational model and health monitoring of gas turbines for			
		helicopters		
09:40		Industrial Keynote		
	F. Ayme: Operational Moc	dal Analysis in aeronautical in	dustry - some examples at	
10.20		Airbus		
10:20		Coffee Break		
	Auditorium	Petri-Turing	Markov	
	OMA for FEM-based	S5 - Optical methods for	S8 - Modeling and	
	assessment (2)	structural identification	computational methods	
	Chairs: P. Fernández,	and monitoring (2)	for physical model-based	
	C. Beering	Chairs:	identification (2) / S11 -	
		D. Anastasopoulos,	Bayesian filters	
		D. Gorjup	Chairs: C. Droz,	
10.40	N. García Eornándoz: Tho	M Kabbara: Post processing	V. MOUTON	
10.40	ROTMAC concept: an of fiber optic sensors data building and simulation			
	experimental application	with consideration of strain	based on modal parameter	
		transfer for distributed	identification of Electrical-	
		strain measurements	Mechanical coupling system	
11:00	E. Chaves: Dynamic Identification and Einite	D. Anastasopoulos: Optimal	A. Gavilan-Rojas: Subspace-	
	Element Model calibration	based on the effective	identification in periodic	
	of the Santa Ana church in	independence method for	waveguides adapted to full-	
	Seville	OMA of a Vierendeel truss	field vibration	
		bridge	measurements	
11:20	L. Vignali: Long-term	N. Aubert: Modal shape	S. OA: Compensating Low	
	Leaning Tower of Pisa	distributed fiber optic strain	Shape Estimation in	
		sensing	Bayesian Filtering with Time-	
			Delayed Data Embedding	
		Auditorium		
		Industrial plenary session		
11:40	R. Mesar, V. Coric (Dewesc	oft): Ultimate SHM technologies a Bridge	and real case study of Autio	
11:50	P. Andersen (SVS): Using AR	P. Andersen (SVS): Using ARTEMIS Modal for vibration-based structural health monitoring		
12:00	B. Peeters (Siemens): Satellite acoustic testing: OMA as part of an engineering workflow			

12:10	E. Dascotte (Dynamic Design Solutions): Virtual OMA for test planning		
12:20	C. Aguilera (Geocomp): OMA as the first step towards digital twin design: case study on a floating offshore wind turbine		
12:30	E. Margallo (Ommatidia Lidar): Massively parallel laser radar for large-scale non-contact vibration analysis		
12:40	Lunch Break		
	Auditorium	Petri-Turing	Markov
	Advanced signal	S4 - Dynamic	S11 - Bayesian filters for
	processing methods	identification and long-	identification and
	Chairs: G. Coppotelli,	term modal-based	infrastructure
	M. Champneys	monitoring of bridges (2)	monitoring
		Chairs: I. Rosati,	Chairs: S. Greś, N. Aswal
		P. Borlenghi	
14:00	G. Martin: Analysis of brake	C. Beering: Examining	S. OA: A novel lagged
	Balance Vector (HBV) signal	natural frequencies with the	sparsely observed systems
	model: dependence of	help of local distance	supplemented with virtual
	squeal frequency,	correlation	measurements sampled in
	fundamental and harmonic		delayed time
	shapes on operational		
14.20	parameters	L Porati: Finita alamant	
14:20	Laser Doppler Vibrometry	model refinement of a	comparison of subspace-
	for Experimental Frequency-	reinforced concrete highway	based and maximum
	based Substructuring	arch bridge based on	likelihood noise covariance
		Operational Modal Analysis	estimation within Kalman
			filtering for virtual sensing
14.40	L. Campello: Definition of a	P. Borlenghi: Operational	O. Zhang: Subspace System
14.40	single axis excitation set-up	modal analysis of two similar	Identification with Unknown
	for a multi-axial random	multi-span bridges	Disturbance Rejection
	fatigue assessments		
15:00	H. Huang: A Deep Learning	B. Bhowmik: Addressing	M. Thing: Identifiability
	Seismic Response Sequence	Structural Health	Excitation of two Mechanical
	Reconstruction	Monitoring: Numerical and	Systems using the Lie-
		experimental validation	derivative and the Empirical
			Gramian Method
15:20	Auditorium		
		Closing Ceremony	
15:50	Farewell coffee & Open discussion		
18:00	Closing		

PLENARY SPEAKERS

Eleni Chatzi, ETH Zürich, Switzerland

Keynote: "Structural dynamics as a principal pillar to Al-enhanced digital twinning"

Auditorium, Wednesday May 21st, 09:00 – 10:00

Eleni Chatzi is Full Professor and Chair of Structural Mechanics and Monitoring at ETH Zürich. Her research focuses on Structural Health Monitoring, digital twins, and data-driven decision-making for infrastructure. She is editor for several leading journals in dynamics and SHM, and has led the ERC-funded WINDMIL project on smart monitoring of wind turbines. She serves as President of the European Academy of Wind Energy (EAWE).

Her work has been recognized with multiple awards, including the 2020 ASCE Walter L. Huber Research Prize, the 2020 EASD Junior Research Prize, the JM Ko Award, and the 2024 SHM Person of the Year.

Spilios Fassois, University of Patras, Greece

Lecture of Honor: *"Time series based robust damage and fault diagnosis for structures and systems under uncertainty"*

Auditorium, Thursday May 22nd, 08:30 - 09:30

Spilios Fassois is Professor and Director of the SMSA Laboratory at the University of Patras, Greece. His research focuses on stochastic and data-driven methods for mechanical and aeronautical systems, with applications in SHM and machine learning. He has published over 320 articles and received several awards, including the 2023 Evangelos Papanoutsos Award from the University of Patras and the 1990 Excellence in Teaching Award from the University of Michigan.

He is Editor-in-Chief of Mechanical Systems and Signal Processing, serves on editorial boards of several major journals, and is active in international scientific committees and conferences.

PLENARY SPEAKERS

Frédéric Batlle, Safran Helicopter Engines, France

Industrial Keynote: "Dynamic computational model and health monitoring of gas turbines for helicopters"

Auditorium, Friday May 23rd, 09:00 – 09:40

Frédéric Batlle is a Senior Expert at Safran Group and Technical Auditor at Safran Helicopter Engines, specializing in mechanics and vibrations. Since 1996, he has focused on turbomachinery vibrations, rotor dynamics, and structural behavior across engine development, certification, production, and fleet support.

He represents Safran's knowledge in technical exchanges with manufacturers and certification authorities, conducts internal and group-wide audits, and trains engineers at Safran University in Structural Dynamics and mechanical integration.

Fabien Ayme, Airbus, France

Industrial Keynote: "Operational Modal Analysis in aeronautical industry – some examples at Airbus"

Auditorium, Friday May 23rd, 09:40 - 10:20

Fabien Ayme has been working in the Airbus Commercial division's Vibration Flight Test Department since 2013.

He holds a Master degree in Mechanical Engineering and a PhD in Vibro-acoustics from École centrale de Lyon, France. Since 2016, his work has focused on aero-elastic testing, covering GVT, flight domain expansion, and flutter tests, following earlier work on various vibro-acoustic topics.

He is currently advancing toward expert status in aero-elastic testing.

SPECIAL SESSIONS

Several special sessions have been organized; special thanks go to their organizers:

S1 – Diagnosis of rotating machinery

Mona Amer (The University of British Columbia, Canada) · Dmitri Tcherniak (HBK – Hottinger Brüel & Kjær, Denmark)

S2 – Monitoring for railway infrastructure: technologies and methods *Charikleia Stoura, Eleni Chatzi, Vasilis Dertimanis (ETH Zürich, Switzerland) Paolo Chiariotti (Politecnico di Milano, Italy)*

S3 – Advances in modal analysis for aeronautical and space systems *Marco Civera (Politecnico di Torino, Italy) · Gabriele Dessena (Universidad Carlos III de Madrid, Spain)*

S4 – Dynamic identification and long-term modal-based monitoring of bridges *Carlo Rainieri, Ilenia Rosati (CNR, Naples, Italy) · Carmelo Gentile, Paolo Borlenghi (Politecnico di Milano, Italy)*

S5 – Optical methods for structural identification and monitoring Dimitrios Anastasopoulos, Edwin Reynders (KU Leuven, Belgium) · Vincent Baltazart (Université Gustave Eiffel, France) · Janko Slavič (University of Ljubljana, Slovenia)

SPECIAL SESSIONS

S6 – OMA for digital twins

Rodrigo Sarlo (Virginia Tech, USA) · Alexander Mendler (Technical University of Munich, Germany)

S7 – Bayesian approaches for engineering dynamics

Timothy Rogers, Aidan Hughes (University of Sheffield, UK) · *Lawrence Bull (University of Glasgow, UK)*

S8 – Modeling and computational methods for physical model-based identification

Adrien Mélot, Christophe Droz (Inria, France)

S9 – Physics-enhanced learning for structural health monitoring tasks

Konstantinos Vlachas, Marcus Haywood-Alexander (ETH Zurich, Switzerland) Konstantinos Agathos (University of Exeter, UK)

S10 – Vibration-based assessment and monitoring for wind energy structures *Silvia Vettori, Emilio Di Lorenzo (Siemens Digital Industries Software, Belgium)*

S11 – Bayesian filters for identification and infrastructure monitoring

Szymon Greś (Aalborg University, Denmark) · Konstantinos Tatsis (Swiss Data Science Center, Zurich, Switzerland) · Subhamoy Sen (IIT Mandi, India) Laurent Mevel (Inria, France)

SOCIAL EVENTS

Welcome Reception – Tuesday, May 20th Le Piccadilly – Place de la Mairie – Rennes

Join us for an informal Welcome Reception at Le Piccadilly Rennes, a vibrant and stylish venue in the heart of the city.

This cocktail evening will feature a variety of finger foods and drinks, providing the perfect opportunity to reconnect with colleagues and meet new ones in a relaxed atmosphere.

The reception will begin at 18:30 and continue until 20:30. Attendees will be able to register to the conference during the evening. The venue is located next to the Opéra de Rennes (Place de la Mairie), just a short walk from République station.

Wine & Cheese Tasting – Wednesday, May 21st L'Aventure / Prison St-Michel – 7 allée Rallier du Baty – Rennes

Enjoy an evening of French flavours at L'Aventure, a historic bar in the heart of Rennes.

This Wine & Cheese Tasting event offers a chance to discover regional and national specialties while exchanging with colleagues in a convivial setting.

The tasting will take place from 19:00 to 21:00, and will be accompanied by light finger food. Feel free to stay at L'Aventure after the tasting, and enjoy the evening at your own pace. L'Aventure is centrally located within La Prison St-Michel. Please remember to bring your conference badge for entry.

SOCIAL EVENTS

SOCIAL EVENTS

Visit of Mont-Saint-Michel & Gala Dinner – Thursday, May 22nd

On Thursday afternoon, join us for a visit to the iconic Mont-Saint-Michel, a UNESCO World Heritage Site and one of France's most admired landmarks. The excursion includes round-trip transportation from Rennes, a guided visit of the abbey, and free time to explore the village. Departure is scheduled at 14:00 from the conference venue.

Participants will be able to leave their belongings in the bus during the event. Following the excursion to Mont-Saint-Michel, we will continue directly to the Château de Bonnefontaine for the conference Gala Dinner. Surrounded by historic charm and peaceful nature, the Château provides a beautiful setting for an evening of fine dining and celebration with colleagues.

The return to Rennes is scheduled for 23:30.

Dress code: We recommend wearing comfortable shoes and bringing sun protection (e.g., hat, sunscreen) for the Mont Saint Michel visit.

To transition smoothly to the gala dinner afterward, consider a smart-casual outfit for the day that balances comfort and elegance, ensuring you feel at ease in both settings.

We will assign the following awards to distinguished members of the IOMAC community.

The **IOMAC Leadership Award** will be assigned by the IOMAC Association and its Chair to a distinguished researcher for seminal contributions in the field of OMA.

Furthermore, awards will be given by IOMAC 2025 for best papers by young researchers and well-established scientists. A novelty for IOMAC 2025 is the 3-minute PhD Pitch contest, with an award for the best pitch. These awards are generously sponsored by Dewesoft with 500 € each:

The **Best Paper Award** will be granted to the author(s) presenting a paper with the most significant impact on the OMA community, selected based on scientific novelty, relevance for practitioners, and clarity of the paper.

The **Best Paper Award for Young Researchers** follows the same criteria and will be granted to the best paper with a young researcher as the main author. A young researcher is defined as a Ph.D. candidate or a graduate who received their Ph.D. in 2022 or later. The paper must be presented by the young researcher at the conference.

The **Best PhD Pitch Award** will be awarded to the winner of IOMAC's 3-Minute Pitch contest, where Ph.D. candidates summarize their research idea or project within a three-minute presentation using a single static slide. Judging criteria are timing, comprehension and content, and engagement and communication.

The recipients of the awards will be officially announced at the IOMAC Conference during the gala dinner on May 22nd, 2025.

EXHIBITORS & SPONSORS

Structural Vibration Solutions A/S has been providing software solutions for Operational Modal Analysis for the last 25 years. On March 1st, 1999, Structural Vibration Solutions was founded as a spin-off from Aalborg University in Denmark.

Our first software release, ARTeMIS Extractor, was made in year 2000 and included the two patented Frequency Domain Decomposition methods FDD and EFDD as well as three versions of the Stochastic Subspace Identification (SSI) methods.

ARTeMIS Extractor has been succeeded by the more powerful ARTEMIS Modal that has a new look and feel. However, the philosophy is the same as it was back when we started. The user should have different methods available for analysis of the measurements to enable a validation of the modal results.

Today, our software is used by more than 1000 users. The users are e.g., mechanical engineers performing modal analysis of operating machinery and components, and civil engineers for ambient vibration testing and analysis of large structures like bridges and buildings.

EXHIBITORS & SPONSORS

Simcenter Physical Testing

Increasing complexity, product diversification, and shortened schedules mean you must test, validate, and optimize real-world designs. Simcenter Physical Testing integrates multiphysics data acquisition with software to streamline data collection, analytics, and modeling in the core fields of vibration, acoustics and durability. siemens.com/simcenter

SIEMENS

Direct Interfaces with FEA and Test Modal Test Planning Modal Parameter Extractor (EMA, OMA) FRF, Modal & ODS Correlation Analysis Design Sensitivity Analysis Finite Element Model Updating Load Identification Structural Health Monitoring

"The Integrated Solution for Linking Test and Analysis"

Integrated Scripting and Automation Versions for Windows and Linux

Dynamic Design Solutions info@femtools.com - www.femtools.com

EXHIBITORS & SPONSORS

At Geocomp, we provide structural diagnostic testing and performance monitoring solutions to help you manage risks and enhance maintenance to your structures. Our experts integrate extensive knowledge in structural engineering with state-of-the-art monitoring technology to keep your projects on schedule, cost-efficient, and safe Thanks S-lvnks to and S-morpho technologies (powered by Sercel), we analyze and assess the dynamic behavior of any structure using Operational Modal Analysis.

Geocomp is Sercel business - the world's leading designer and manufacturer of high-tech solutions for subsurface exploration.

ORGANIZING COMMITTEE

IOMAC 2025 is organized by Inria within the I4S research team at the Inria centre at Rennes University.

Local Organizing Committee

Michael Döhler, Inria (chair) Palle Andersen, Structural Vibration Solutions A/S Edith Blin. Inria Christophe Droz, Inria Alvaro Gavilán Rojas, Inria Szymon Greś, Aalborg University Niels-Jørgen Jacobsen, Hottinger Brüel & Kjær Adrien Mélot. Inria Alexander Mendler, Technical University of Munich Laurent Mevel. Inria Gunther Tessier, Inria

The organizers gratefully acknowledge the generous local support and sponsorship:

IOMAC SCIENTIFIC COMMITTEE

Alexander Mendler, Technical University of Munich Álvaro Cunha, University of Porto, Faculty of Engineering (FEUP) Anders Brandt. University of Southern Denmark Bart Peeters. Siemens Industry Software Carlo Rainieri. CNR Carlos Ventura, University of British Columbia Carmelo Gentile, Politecnico di Milano Dmitri Tcherniak. Hottinger Brüel & Kiær Dora Foti. Politecnico di Bari Eddy Dascotte, Dynamic Design Solutions (DDS) Edwin Reynders, KU Leuven Filipe Magalhães, University of Porto Giuliano Coppotelli, Università degli Studi di Roma "La Sapienza" Guido De Roeck. KU Leuven Jacek Grosel. Wroclaw Univ. of Technology Janko Slavic, University of Ljubljana Javier Cara Cañas, Universidad Politécnica de Madrid Jörg Bienert, Technische Hochschule Ingolstadt Julie Regnier. Cerema Jyrki Kullaa, Helsinki Metropolia University of Applied Sciences Laurent Mevel. Inria Liga Gaille, Riga Technical University Manuel Aenlle, University of Oviedo Michael Döhler, Inria Niels-Jørgen Jacobsen. Hottinger Brüel & Kiær Palle Andersen. Structural Vibration Solutions Pelayo Fernández Fernández, University of Oviedo Ruben Boroscheck, University of Chile Rune Brincker, Technical University of Denmark Sandro Amador, Technical University of Denmark Szvmon Greś. Aalborg University Thomas Schmidt, University of Applied Sciences Magdeburg

<u>NOTES</u>

<u>NOTES</u>

<u>Contact information</u> www.iomac2025.com info@iomac2025.com

